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Solitary wave solutions in double sinh-Gordon system 
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Department of Physics, University of Cochin, Cochin 682022, India 

Received 24 January 1983, in final form 17 March 1983 

Abstract. Two new classes of solitary wave solutions for the recently suggested double 
sinh-Gordon system have been obtained. These solutions possess nice stability and 
asymptotic properties and are characterised by zero topological charge. The existence 
and behaviour of these solutions in more than two space-time dimensions and the 
properties of multisolitary waves have been studied in detail. 

1. Introduction 

The sine-Gordon (SG) equation has a wide range of applications in solid state physics 
and nonlinear optics. In (1 + 1) dimensions the SG field system undergoes a second- 
order phase transition (Babu Joseph and Kuriakose 1982). A number of related 
nonlinear models have been analysed in the recent past which include the sinh-Gordon 
(shG) (Mckean 198 1) and the various double sine-Gordon (DSG) equations (Bullough 
et a1 1980). The ShG system arises as a trivial map of the SG field, but the ShG system 
differs from the latter by the absence of soliton solutions (Ablowitz et a1 1973). 
Various kink (Bullough ef a1 1980) and ‘soliton’ solutions (Burt 1978) of the DSG 
system have also been considered. The DSG equation arises, for instance, in the 
treatment of quasi-one-dimensional charge-density wave condensates of organic linear 
conductors like TTF-TCNQ (Rice 1978). 

A new member has recently been added to the DSG family of equations by Behera 
and Khare (1981). Because of its analogy with the DSG model, the Behera-Khare 
model may be called the double sinh-Gordon or DshG system, which is characterised 
by the potential 

V ( 4 )  = i q 2  cosh 4 4  - 77 cosh 2 4  - 2v2 + 477 (1.1) 

where 7 is a real parameter. They found a kink solution for this model and demon- 
strated the possibility of calculating the exact free energy associated with the second- 
order phase transition that the system undergoes. In this paper we obtain, using 
the methods of bilinear operators (Hirota 1972) and base equations (Burt 1978), two 
new classes of solitary wave solutions of the DShG system. Characterised as they are 
by a vanishing topological charge, these new solutions can be considered non-topo- 
logical objects (Lee 1976). Application of the base equation technique leads to 
N-solitary wave solutions in space-time with dimension greater than two. The linear 
stability of the waves in (1 + 1) dimensions is examined in detail and we find that the 
solutions are stable. The asymptotic stability of the N,-solitary wave solution is also 
discussed. Despite the somewhat popular practice (Burt 1978) of considering 
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asymptotically vanishing solutions generated by the base equation technique to be 
solitons, in the absence of any study of the collisional stability of the waves we do 
not claim that our solitary wave solutions are solitons. 

2. Solitary waves by the bilinear operator method 

The equation of motion corresponding to the potential defined in (1.1) is given by 

qLX - drt = $77 sinh 4d - 277 sinh 2 4 .  (2 .1 )  

Define a transformation 

= tanh-'(g/f) 

so that (2 .1 )  yields the bilinear differential equation 

( f 2 + g 2 ) ( D ?  - D : ) f * g - f . g ( D :  -DP)(f*f + g * g )  

=2772f.g(f2+g2)-4477(f2-g2)f ' g  

where 0: is the bilinear differential operator (Hirota 1972) defined by 

D:a b = [ (a /&) - (a/az')]"a ( z  . b ( z ' ) l z  = z , .  

On decoupling (2.3), we find 

! D f - D : ) f . g = 2 7 7 ( 7 7 - 2 ) f . g  

(D?  - D f ) ( f * f + g  * g )  = -8 t lg  * g  

where 

D f f . g = D , ( f x  * g - f ' g x )  

Dzf .f = 2 D x ( f 1  s f ) .  

(2.2) 

(2.3) 

We introduce power series expansions for f and g in a parameter 8 which is very 
close to unity: 

(2 .8 )  

(2.9) 

f = 1+&2 f2+&4 f4+ .  . . 
g = & g l + &  g 2 +  . . . .  2 

On equating the coefficients of same powers of E we obtain a set of differential 
equations. By proper selection of gl  and f 2  we have obtained an exact solution in 
the form 

(2 .10)  

g = e R  and 8 = kx -ut + S  (2.11) 

and we have set E = 1 ,  following Hirota (1972).  
The associated dispersion relation is 

k 2 - u 2 = 2 ~ ( 7 7  - 2 ) .  

Equation (2.10) gives the solitary wave solution 

d(0)  = tanh-' ee [l -e2@/(277 -4)I-l 

(2.12) 

(2.13) 
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The only other known solution of the mhc equation is a kink (Behera and Khare 
1981): 
4(x,  t ) =  t a n h - ’ { ( l - ~ q ) ( l - ~ q  1 2 ) -1 /2  tanhJ2(1-$rlZ)-’/JZ(x - u t ) / [ m ( c 2 - u  2 )] 1/2 ) 

(2.14) 
which exists for the values 1q I < 2. 

In contrast with the kink solution (2.13), the new solution is defined only for 
77 E (O,2) and can readily be extended to arbitrary dimensions. We might expect to 
obtain the multisolitary wave solution by setting 

(2.15) 

However, the corresponding power series of the form (2.8) and (2.9) do not terminate; 
thus the bilinear operator method fails to provide any such solutions. 

N 
g =  L e“‘. 

i = l  

3. N-solitary wave solutions 

A differential equation whose solution is used to solve another differential equation 
is called a base equation. This method has been exploited by Ried and Burt (1974) 
in obtaining several solitary wave solutions. 

Let us rewrite (2.1) in arbitrary dimensions as 

a, 8 4  = i77 * sinh 4 4  - 277 sinh 2 4  

4 = sinh-’ 4 (3.2) 

(3.1) 
with CL = 0, 1, . . . , n - 1. The transformation 

converts (3.1) into the form 
2 - 1 / 2  2 -3/2 (1+4 ) a,a”4-(1+4 ) 4(aF4a”4) 

-2q24(1  +q!~~)”~(l +2$*)+4q$(1 +tJ2) l”  = O .  (3.3) 
The following nonlinear differential equation may be taken as the base equation 
corresponding to (3.3): 

(3.4) ca,+)(aF4) = (1 + ( ~ ~ ~ 4 7 7  - 6 q 2  - D)I+? - (1 + 42)(4772 + ~ ) 4 ~ .  
II, may be expressed as 

4 = u A - ~ ’ ~  (3.5) 
where 

A = (1 - (Bu2/8m2))’ - (Cu4/12O2) (3.6) 
and U satisfies the equations 

a,a”u +D’U = o (3.7) 

(a,u)(a*u)+D2U2=o. (3.8) 
Henceforth, the last two equations can be employed as base equations for solving 
(3.4). These equations admit a solution 

(3.9) 
akr  . u = a e  , 



2688 K Babu Joseph and B V Baby 

then 

B=8T -871’ C = - 6 ~ ~  D =477 -2q2  

k = ko, ki, k 2 , .  . . , k,-i x = xo, XI,. . . , Xn-1 (3.10) 

giving 

4 = u { l - ~ [ ( 1 - 2 ~ ) / ( 4 - 2 q ) ] U 2 + ( 4 - 2 ~ ) - Z U 4 } - 1 ’ 2 .  (3.11) 

The parameter Q evidently satisfies the condition 

Q = [ - (477 - 277 ’)/k”’’’ (3.12) 

All the solutions of equations (3.7) and (3.8) are automatically the solutions of the 
so that 477 - 277’ < 0. 

DshG equation. By the linear superposition principle 
N 

u = 1 ai exp(crikix) 
i = l  

(3.13) 

is also a solution of (3.7). On substituting this solution in (3.11) an N-solitary wave 
solution of the DShG equation emerges with the additional conditions 

(3.14) ala, * k,k, + (477 - 277 2)2  = 0 

where 

ki = (kio, kii ,  . . . , k 1 n - i )  = (kio, K , )  

k, + k, K, - K, f 0 

for any i , j .  Equation (3.14) shows that the dimensionality of the space-time n and 
the maximum possible number of N-solitary waves are related by 

N s 2 n - 1 .  (3.15) 

Nevertheless, in (1 + 1) dimensions only one solitary wave can be formed as there is 
only one independent wavevector and any other wavevector is necessarily parallel to 
it. 

4. Linear stability of solutions in (1 + 1) dimensions 

The static form of (2.13) is written 

ds(x) = tanh-’ e k x [ l  -eZkx/(277 -4)]-’, (4.1) 
Let 

4 (x, t )  = dS(x) + 4p(x, 0 (4.2) 
where dP(x, t )  is a perturbation such that I c $ ~ I < <  1. On substituting (4.2) in (2.1) we 
obtain 

(4.3) 

(4.4) 
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This leads to the Schrodinger eigenvalue problem, 

[ - (a2/ax 2, + ~ " ( 4 , )  + A '~f = o (4.5) 

for the potential 

V o ( c $ , ) = 2 q 2 ~ ~ ~ h 4 4 , - 4 q  cosh 24,-(2q2-417). (4.6) 

V0(4,)is smooth and bounded and tends to zero as x + *W. Thus, there exists at 
most a finite number of bound product solutions for which PI + 0 as x + f 00. But 
corresponding to the eigenvalue A = 0, there exists a non-zero eigenfunction f as 

f(x, 0) =a4,/ax.  (4.7) 

The nodes of f are infinitely separated; so A = 0 is the lowest eigenvalue (Morse and 
Feshbach 1953). This proves the linear stability (Jackiw 1977) of the solution (2.13). 
The solitary waves obtained by the base equation method as well as by Behera and 
Khare can be shown by similar arguments to be linearly stable. 

5. Asymptotic behaviour of N-solitary wave solution 

The N-solitary wave solutions in more than two dimensions are of the form 
-2 4 -1/2 4 N  = ~inh-'(uN{l-;[( 1 - 2 7 ) / ( 4 - 2 q ) ] ~ i  + (4- 277) UN} ) (5.1) 

where 
N 

U N  = C ai exp(aikix). 
i = l  

This can be seen to break up into N simple waves in the asymptotic regions. For as 

a,k,x -P -00, 4~ + sinh-' UN 

and as a,k,x + +CO,  the dominant term in the braces of (5.1) is ( 4 - 2 ~ ) - ~ u & ,  con- 
sequently 

c$N =sinh-'[(4-2q)u,i1] as a,k,x -P +CO. 

To calculate the phase shift we consider the ith wave in the asymptotic regions: 

4, = sinh-'[a, exp(a,k,x)] asx+-co (5.3) 
4,=sinh-'[(4-277)~;' exp(-a,k,x)] asx -P +CO. (5.4) 

Defining the corresponding phases (Witham 1974) as 

8'- = log a1 

6 : = log[(4 - 277)a 7' 3 
the phase shift for the ith wave is then given by 

Ai=S: -8' =log[(4--2q)/af]  (5.7) 

The N-solitary wave solutions behave as if they were simple waves both at -CO and 
+ 03, and each component wave nearly undergoes a phase shift given by (5.7). However, 
there is no loss of stability for the N-solitary wave profile as a whole in the asymptotic 
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regions. Even though the N-solitary wave solutions possess very good stability 
properties, Derrick's theorem (Derrick 1964) does not permit them to possess finite 
energy. 

6. Topological charges 

The conserved topological charge Q associated with a solitary wave in (1+1)  
dimensions is defined as 

m 

Q = I J'dx 
,~ 03 

where 

J" = '''auq5 

(6.1) 

(6.2) 

and 
& = --E up 0 1 

& = 1  

The Behera-Khare kink can be shown to possess a topological charge 

Q = 2 tanh -l[(2 - q) / (2  +77)]1'2 l r l l<2. (6.3) 

However, the solitary wave solutions reported herein by us are associated with 
vanishing topological charge and are, therefore, non-topological configurations (Lee 
1976). 

7. Conclusion 

We have obtained two new classes of solutions for the recently suggested double 
sinh-Gordon system which is a member of the sine-Gordon family of equations. These 
solutions possess nice stability and asymptotic properties, but zero topological charge. 
Whether the asymptotically vanishing non-topological solutions are solitons or not 
is not clear from the present analytical study. The N-solitary wave solution in more 
than one space dimension has been shown to break up into N simple waves in the 
asymptotic regions; similar behaviour has been noted (Witham 1974, Zabusky and 
Kruskal 1965) for KdV solitons in one space dimension. 
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